Nutritional Demands of Disease and Trauma

Lecture 89

©2000 Northwestern University
Medical School

Nutritional Requirements

- Based on needs to support optimal physiological function
- Are changed by disease or injury
 - metabolism is altered
 - to prevent further cellular damage
 - to promote repair
 - metabolic priorities shift
 - collateral metabolic pathways emerge

Nutritional Status

- Reflects how well nutrient needs will be met over a range of metabolic demands
- Predictive of risk of complications
 - infection/sepsis
 - respiratory disease
 - acute renal failure
 - hepatic encephalopathy
 - congestive heart failure
 - multiple organ failure

Change in Energy Requirements Due to Disease or Injury

- Resting energy expenditure increased by 10-50% (injury factor)
 - to support increased metabolic workload
- An additional allowance is added for activity (activity factor)
 - 20 % if confined to bed
 - 30 % if ambulatory

Change in Resting Energy Expenditure in Disease

Consequences of unmet energy needs are related to:

- Amount of weight loss
 - 20% loss = immune dysfunction
 - -40% loss = fatal
- Rate of weight loss
 - 15-20% of usual body weight
 - 10% over previous 6 months
 - 5% over previous month
- Composition of weight loss
 - lean body mass

Critical Nature of Loss of Lean Body Mass

- Lean body mass=cell mass
 - metabolically active compartment
- Individual tissue losses proportional to total loss
 - except brain which is primarily lipid
 - no tissue is spared
- Irreversible at some point
 - critical mass

Protein requirements are altered to accommodate:

- Immune response
- Increased metabolic activity
- Replacement of damaged cells
- Replacement of protein losses
 - perspiration, blood, exudates, renal, intestinal
 - ↑ if anorexia accompanies fever/infection
 - ↑ by muscle proteolysis
 - up to 35 g/day with metabolic stress

Characteristics of Metabolic Stress

Hormonal	Metabolic	Chemical
↑ Catecholamines	↑ REE	↓ pH
↑ Glucagon	Hyperglycemia	Prostanoids
↑ Corticosterioids	Ketoacidosis	Leukotrienes
Insulin Resistance	Uremia	Cytokines

Causes of Muscle Proteolysis with Metabolic Stress

- Increased demand for glucose
 - by leukocytes and fibroblasts (wound)
 - elevated catecholamines and corticosteriods
- Increased rate of gluconeogenesis
 - substrates
- Elevated glucagon
- Insulin resistance
- Accelerated by insufficient energy intake

Effect of Disease and Trauma on Protein Requirements

Muscle WastingStarvation vs Metabolic Stress

Characteristic	Starvation	Metabolic Stress
REE	Decreased	Increased
Muscle Catabolism	Energy	Glucose
Ketone	Oxidized for Energy	Oxidation Inhibited
Insulin Levels	Physiological Low	High/Insulin Resistance
Weight Loss	Fat + Protein	Protein

Vitamin and mineral requirements are altered to accommodate:

- Increased energy requirements
- Increased rate of protein synthesis
- Activation of immune system
- Increased rate of cell proliferation
- Fluid balance

and also

Vitamin and mineral requirements are also increased to accommodate:

- Hemostasis
 - coagulation and blood loss
- Replacement of muscle mass
- Prevention of further cellular injury
- Detoxification
 - hormones, drugs, microbial toxins

Disease-Specific Nutritional Adjustments

- Malnutrition contributes to functional deterioration of organ systems
- Disease or injury to organs affects the course of malnutrition
- Dietary adjustments allow nutrients to be processed in the absence of normal function

Nutritional Effects on Cardiovascular Function

- protein-energy
 malnutrition/obesity
 - ECG abnormalities
 - myofibrillar degeneration
 - – ↓ cardiac contractility
 - congestive myopathy
- vitamin antioxidant deficiencies
 - poor vascular integrity

- protein-energy malnutrition
 - - myocardial mass
 - hypometabolism
 - ↓ cardiac strength
- fluid/electrolyte imbalances
 - altered cardiac contractility
 - abnormal BP

Nutritional Effects on Lung Function

- Stimulation of ventilatory drive
- Maintenance of respiratory muscle mass
- Influence on inflammatory response
- Influence on pulmonary vasomotor tone

Role of the Gastrointestinal Tract in Maintenance of Nutritional Status

- Release of nutrients from dietary sources
 - digestion
 - absorption
- Regulation of nutrient intake
 - appetite/satiety
- Immunological function

Nutritional Problems Associated with Gastrointestinal Disease and Injury

- Reduced digestive/absorptive capacity
- Inability or desire to consume nutrients orally
- Increased nutrient losses
- May involve inflammation
- May involve ulceration

Role of the Liver in Maintenance of Nutritional Status

- Accommodates nutrient stores
- Provides nutrient transport proteins
- Metabolizes amino nitrogen
- Critical to glucose homeostasis
- Activates/deactivates Vitamin D
- Contributes to fluid balance

Nutritional Problems Associated with Liver Disease and Injury

- Condition-specific effects
 - hepatitis, cirrhosis, liver failure
- Impaired protein metabolism (cirrhosis)
 - — ↑ ammonia production and ↓ albumin synthesis
- Abnormal vitamin/mineral metabolism
- Decreased nutrient availability
- Blood glucose and lipid abnormalities
 - hypoglycemia and glucose intolerance

Role of the Kidney in Maintenance of Nutritional Status

- Disposal of metabolic waste
- Maintenance of blood nutrient levels
- Buffering of body fluids
- **Nitamin** D activation

Nutritional Problems Associated with Renal Disease and Injury

- Decreased excretion of nutrients/waste
 - ↓ GFR
- Insulin resistance
- Decreased lipoprotein lipase activity
- Fluid and electrolyte imbalances
- Loss of bicarbonate
- Abnormal calcium/phosphorus metabolism

Role of the Cardiovascular System in the Maintenance of Nutritional Status

- Delivers oxygen and nutrients
- Transports metabolic waste to disposal sites
- Contributes to fluid and electrolyte balance
- Maintains body temperature
- Influences metabolic rate

Nutritional Problems Associated with Cardiovascular Disease and Injury

- Reduces cardiac output
- Decreased oxygen delivery
 - hypometabolism
- Accumulation of metabolic waste

Role of the Respiratory System in the Maintenance of Nutritional Status

- Regulates oxygen uptake
- Regulates carbon dioxide disposal
- Contributes to acid-base balance

Nutritional Problems Associated with Lung Disease and injury

- Changes fuel source requirement
- Increases energy expenditure for respiration
- Alters acid-base balance

Adjustments in Protein Requirements

- Restricted intake
 - acute renal disease
 - hepatic encephalopathy
- Increased intake
 - acute renal disease with dialysis
 - chronic renal disease with dialysis

Adjustments in Energy Requirements

- Increased
 - metabolic stress
 - acute renal disease without dialysis
- Decreased/Unchanged
 - acute/chronic renal disease with dialysis

Adjustment in Fluid Requirements

- Increased intake
 - fever
 - metabolic stress
- Decreased intake (with sodium restriction)
 - renal disease
 - liver disease

Micronutrient intakes should be adjusted:

- When energy intakes are increased
- When protein intakes are increased
- For skeletal disease or injury
- With tissue injury
- With fluid imbalances
- With blood loss
- If immune response is activated